# Single-crystal Magnetic Properties of Lanthanide Complexes. Part VII.<sup>1</sup> Hexakis(antipyrine)europium(III) Tri-iodide

By M. Gerloch \* and D. J. Mackey, University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW

The principal and average magnetic moments of hexakis(antipyrine)europium(III) tri-iodide (antipyrine is 2,3-dimethyl-1-phenyl- $\Delta^3$ -pyrazolin-5-one) have been measured in the temperature range 300—80 K. Approximate values for the powder susceptibilities have also been determined down to 4 K. These are interpreted within a point-change crystal-field model of  $D_{3d}$  symmetry, using the free-ion ground term, corrected for the effects of intermediate coupling, as basis. However, the restricted basis of  ${}^7F_0 + {}^7F_1 + {}^7F_2 + {}^7F_3$  was found to be sufficient for present purposes. Sixth-order crystal-field terms cannot operate in the first three states so that no value for  $\rho_6$  could be estimated. Estimates of  $\rho_4$  depend critically upon the energy levels of the very low-lying state of europium(III), so that only a relationship between these has been established. Magnetic anisotropies, however, have fixed a value of  $A_2^{0}\langle r^2 \rangle$ , related to the second-order potential, of *ca*. 250 cm<sup>-1</sup>.

EUROPIUM(III) ions take a somewhat special place in the history of the magnetic properties of the lanthanides for, with samarium(III) ions, their experimental moments are not well reproduced by Hund's formula,  $\mu = g\sqrt{J(J+1)}$  BM, in which lanthanide moments are taken to be a property of the ground state alone. Van Vleck and Frank<sup>2</sup> successfully modified the theory by including first- and second-order Zeeman effects from nearby excited states. The same problem concerns us in Eu(antip)<sub>6</sub>I<sub>3</sub> (antip = antipyrine = 2,3-dimethyl-1-phenyl- $\Delta^3$ -pyrazolin-5-one) being the next in our studies of trigonally distorted octahedral lanthanide complexes.

The  ${}^{7}F$  free-ion ground term of the  $f^{6}$  configuration in europium(III) ions spans an energy spectrum of some 5000 cm<sup>-1</sup> and is then well separated energetically from the other terms, the nearest being components of  ${}^{5}D$  at *ca.* 17,000 cm<sup>-1</sup>. Mean energy levels observed from spectra of europium chloride, double nitrate, and ethyl sulphate are given in Table 1. These energy levels do

# TABLE 1

#### Free-ion eigenvalues and eigenvectors for $f^6$

| State                   | ${}^7F_0$ | ${}^{7}F_{1}$    | $^7F_2$      | ${}^{7}F_{3}$ | ${}^7F_4$ | ${}^7F_5$ | ${}^7F_6$ |
|-------------------------|-----------|------------------|--------------|---------------|-----------|-----------|-----------|
| Euergy/cm <sup>-1</sup> | Ő         | $35\overline{5}$ | $10\bar{23}$ | 1847          | 2751      | 3802      | 4907      |
| % purity                | 94        | 95               | 96           | 97            | 98        | 98        | 97        |

not fit a Landé splitting rule at all well; those for the inverse  $f^8$  configuration of terbium(III) were rather better. As usual this behaviour results from the effects of intermediate coupling and Ofelt<sup>3</sup> has fitted these

energies and those of higher states by a least-squares fit to an intermediate coupling model parameterized by one interelectronic repulsion parameter,  $F_2$ , and  $\zeta$ , the spin-orbit coupling parameter. The third line in Table 1 gives approximate % parities of the eigenvectors derived in Ofelt's treatment. As often appears to happen for lanthanide ground-terms (but see  $f^{12}$ , Part VI <sup>1</sup>) intermediate coupling is manifest in the eigenvalues but not significantly in the eigenvectors.

Our calculations as usual involve a  $D_{3d}$  symmetry crystal field with the parameters  $\rho_2$ ,  $\rho_4$ ,  $\rho_6$  for second-, fourth-, and sixth-order radial parameters in the pointcharge formalism:  $\theta$ , the effective distortion angle, is the angle subtended by any Eu-O bond and the molecular triad. We have considered basis sets spanning the complete  ${}^{7}F$  term although we find that all moments are calculated identically for the restricted basis of the four lowest states:  ${}^{7}F_0 + {}^{7}F_1 + {}^{7}F_2 + {}^{7}F_3$ .

## EXPERIMENTAL

Powder susceptibilities and crystal anisotropies of  $\operatorname{Eu}(\operatorname{antip})_6 I_3$  were measured in the temperature range 80—300 K by the Gouy and Krishnan 'critical torque' techniques, respectively. The results, corrected for the diamagnetic properties of powdered samples and single crystals of the lutetium analogue, are given in Tables 2

<sup>1</sup> Part VI, M. Gerloch and D. J. Mackey, preceding paper.

<sup>2</sup> J. H. Van Vleck and A. Frank, *Phys. Rev.*, 1929, **34**, pp. 1494, 1625.

<sup>3</sup> G. S. Ofelt, J. Chem. Phys., 1963, 38, 2171.

and 3. Interpolated principal molecular moments are given in Table 4. Procedures and calibrations are as in ref. 4.

|               | IABL                               | EZ            |                             |
|---------------|------------------------------------|---------------|-----------------------------|
| Expe          | rimental mean mole                 | cular susce   | ptibilities of              |
| <u>^</u>      | Eu(ant                             | $ip_{6}I_{3}$ | -                           |
|               | 10 <sup>6</sup> x̄ <sub>M</sub> ′/ | 2700          | 10 <sup>6</sup> у́м'/       |
| T/K           | c.g.s.u. mole <sup>-1</sup>        | T/K           | c.g.s.u. mole <sup>-1</sup> |
| 301.0         | 4865                               | 207.0         | 5715                        |
| $292 \cdot 5$ | 4965                               | 191.5         | 5845                        |
| 289.0         | 5000                               | 174.0         | 6195                        |
| 285.0         | 5015                               | 162.5         | 6215                        |
| 276.5         | 5055                               | 148.5         | 6320                        |
| 268.0         | 5130                               | 132.0         | 6405                        |
| 259.5         | 5205                               | 114.5         | 6405                        |
| 239.0         | 5365                               | 100.0         | 6620                        |
| 224.0         | 5540                               | 90.0          | 6495                        |
|               |                                    |               |                             |

|                | TABL                                                                         | Е З          |                                                                                      |
|----------------|------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------|
| Experin        | nental molecular an                                                          | isotropies o | of Eu(antip) <sub>6</sub> I <sub>3</sub>                                             |
| T/K            | $\frac{10^6(\chi_{\perp} - \chi_{\parallel})}{c g s \mu} = \frac{10^6}{100}$ | T/K          | $\frac{10^{6}(\chi_{\perp} - \chi_{\parallel})}{c g s u} = \frac{10^{6}}{mole^{-1}}$ |
| 291.5          | 915                                                                          | 189.0        | 1960                                                                                 |
| $282 \cdot 0$  | 990                                                                          | 168.5        | 2260                                                                                 |
| 270.0          | 1085                                                                         | 148.5        | 2590                                                                                 |
| 257.0          | 1190                                                                         | 134.0        | 2825                                                                                 |
| 245.0<br>227.5 | 1305                                                                         | 103.5        | 3035                                                                                 |
| 216.0          | 1610                                                                         | 89.0         | 3460                                                                                 |
| 200.0          | 1815                                                                         |              |                                                                                      |

| т   |    | пτ | 12 | A   |
|-----|----|----|----|-----|
| _ 1 | А. | вг | Ľ. | - 4 |

Principal magnetic moments of Eu(antip)<sub>6</sub>I<sub>3</sub>

| T/K           | $\bar{\mu}/BM$ | $\mu_{\parallel}/{ m BM}$ | $\mu_{\perp}/{ m BM}$ |
|---------------|----------------|---------------------------|-----------------------|
| 301.0         | 3.42           | 3.22                      | 3.51                  |
| 292.5         | 3.41           | 3.19                      | 3.51                  |
| 289.0         | 3.40           | 3.18                      | 3.51                  |
| $285 \cdot 0$ | 3.38           | 3.16                      | 3.49                  |
| 276.5         | 3.34           | 3.11                      | $3 \cdot 46$          |
| 268.0         | 3.32           | 3.02                      | 3.43                  |
| 259.5         | 3.28           | 3.04                      | 3.41                  |
| <b>239</b> ·0 | $3 \cdot 20$   | 2.92                      | 3.34                  |
| $224 \cdot 0$ | 3.12           | 2.84                      | 3.29                  |
| 207.0         | 3.02           | 2.75                      | 3.23                  |
| 191.5         | 2.99           | 2.64                      | 3.12                  |
| 174.0         | 2.94           | 2.57                      | 3.11                  |
| 162.5         | 2.84           | $2 \cdot 46$              | 3.02                  |
| 148.5         | 2.74           | 2.34                      | 2.92                  |
| 132.0         | 2.60           | 2.18                      | 2.79                  |
| 114.5         | $2 \cdot 42$   | 1.99                      | $2 \cdot 61$          |
| 100.0         | 2.30           | 1.88                      | $2 \cdot 49$          |
| 90.0          | $2 \cdot 16$   | 1.74                      | 2.35                  |

We have also measured the powder susceptibility of Eu(antip)<sub>6</sub>I<sub>3</sub> in the range 4-100 K using a P.A.R. 150 vibrating sample magnetometer. There is some evidence of slight variation of  $\tilde{\chi}$  in this temperature range perhaps associated with a hysteresis effect. If real, such an effect might be linked with the reported phase-change in these complexes. The matter is being studied further. We quote here the result that  $\overline{\chi}$  is approximately constant below ca. 75 K with the value  $6500 \pm 200$  c.g.s.u.

## DISCUSSION

The energies of the first four states of trigonally distorted octahedral  $f^6$  ions shown in Figure 1 as functions of the distortion angle  $\theta$ . States arising from the freeion  ${}^7\!F_1$  state approach within 100 cm<sup>-1</sup> of the ground state but do not cross it for the conditions of Figure 1. There is therefore a J = 0,  $A_{1q}$  non-magnetic groundstate throughout the angular range.

In Figure 2 we show principal and average moments as functions of  $\theta$ , calculated using the basis states corrected for intermediate coupling as discussed in the Appendix. If this correction is ignored all moments differ by less than ca. 0.08 BM at 100 K or 0.04 BM at 300 K, intermediate coupling serving to raise the moments roughly uniformly across the angular range. The results shown in this Figure derive from the first four states as basis: some repeated calculations in the full-term basis show that all moments are affected by



FIGURE 1 Crystal-field splittings for the four lowest states of <sup>3</sup> as functions of the trigonal distortion angle  $\theta$ ;  $\rho_2$  1500,  $\rho_4$ 5000, and  $\rho_6$  200 cm<sup>-1</sup>



FIGURE 2 Principal and average moments for  $f^8$  systems in  $D_{3d}$  at A-C 100 K and D-F 300 K symmetry;  $\rho_2$  1500,  $\rho_4$  500, ρ<sub>6</sub> 200 cm<sup>-1</sup>

ca. 0.06 BM at most, some being raised, others lowered. As usual room-temperature mean moments  $\bar{\mu}(300 \text{ K})$  vary little with  $\theta$  but  $\bar{\mu}(100 \text{ K})$  varies rather more, especially for  $\theta > \theta_{oct}$ .  $\bar{\mu}$  at 300 or 100 K is independent of  $\rho_2$  for a given  $\theta$  value (not shown); *i.e.* variations of less than ca. 0.02 BM in the range  $500 < \rho_2 < 2500$  cm<sup>-1</sup>. The sign of anisotropy is uniquely determined by the sign of distortion being  $\mu_{\parallel} > \mu_{\perp}$  for  $\theta > \theta_{oct}$  and vice versa. Further, as for most members of this series,  $\bar{\mu}$  values decrease with decreasing temperature; anisotropy values increase.

<sup>4</sup> B. N. Figgis, M. Gerloch, J. Lewis, and R. C. Slade, J. Chem. Soc. (A), 1968, 2028.

All moments change by <0.01 BM as  $\rho_6$  varies in the range  $0 < \rho_6 < 500 \text{ cm}^{-1}$  at any temperature. This is obviously due to the first state in which a sixth-order crystal-field harmonic can operate being the  ${}^7F_3$  at 1800 cm<sup>-1</sup> above ground. Consequently this investigation is unable to determine any value for  $\rho_6$  but equally, estimates of other parameters are unaffected by any  $\rho_6$  value assumed for computational purposes.



FIGURE 3 Principal and average moments of  $f^{\theta}$  systems as functions of  $\rho_4$  at A 300 K and B 100 K. Experimental value for Eu(antip)<sub>6</sub>I<sub>3</sub> are indicated;  $\rho_2$  1500,  $\rho_6$  200 cm<sup>-1</sup>, and  $\theta =$ 53°. (a)  $\Delta E({}^7F_1 - {}^7F_0)$  355 cm<sup>-1</sup> (Table 1), and (b)  $\Delta E$  220 cm<sup>-1</sup> corresponding to a Landé interval rule with  $\zeta$  1320 cm<sup>-1</sup>

Figure 3(a) shows principal and mean moments as functions of  $\rho_4$ . Again there is not very much variation for a similar reason to that discussed for  $\rho_6$  dependence: the first 'magnetically active' level for fourth-order harmonics is the  ${}^7F_2$  at ca. 1000 cm<sup>-1</sup>. Nevertheless, there remains sufficient dependence of moments on  $\rho_4$  to suggest searching for a fit to the experimental value for  $Eu(antip)_{6}I_{3}$ . Figure 3(a), however, shows that the calculated mean moments at 300 K are sufficiently low to require a  $\rho_4$  value in excess of *ca*. 700 cm<sup>-1</sup> to fit experiment. Such a high value for  $\rho_4$  seems out of place compared with values we have found for other compounds in this series. The curves in Figure 3 are calculated assuming  $\theta$  53° but, as discussed earlier,  $\bar{\mu}(300 \text{ K})$ values are so little affected by  $\theta$  that some  $\theta$  values as low as, say, 49° might be required to improve the situation in Figure 3(a). Even though we regard  $\theta$  as an effective distortion angle, we do not favour such low values, especially as other complexes throughout the series could be fitted with  $\theta$  anywhere in the range 49— 54°, say.  $\bar{\mu}$  values are independent of  $\rho_2$  and  $\rho_6$  so we must vary something other than the crystal-field parameters.

The ground state is non-magnetic and all contributions to moments are from excited state. The placing of their energy levels is therefore particularly important and doubly so as the first level for europium(III) is only *ca.* 350 cm<sup>-1</sup> above ground. We recall at this point that the energy values quoted in Table 1 are those for other europium compounds. Van Uitert and Soden <sup>5</sup> have reported that Eu(antip)<sub>6</sub>I<sub>3</sub> fluoresces weakly but do not quote any detailed results. We have tried using Ofelt's spin-orbit coupling coefficient value,  $\zeta$  1320 cm<sup>-1</sup>, to calculate the <sup>5</sup> L. G. Van Uitert and R. R. Soden, *J. Chem. Phys.*, 1962, **36**, 1797. first energy level assuming a Landé interval rule. This gives the energy of  ${}^7F_1$  as 220 cm<sup>-1</sup> above ground. The resulting moment, again as functions of  $\rho_4$  are shown in Figure 3(b). Clearly no fits are possible, all calculated moments being too high. It is interesting to recall Van Vleck and Frank's early calculation <sup>2</sup> of the moments of europium(III) compounds. They assumed a Landé interval rule, *i.e.* neglect of intermediate coupling, and adjusted  $\zeta$  to fit observed moments. They found  $\zeta$  to be 1530 cm<sup>-1</sup>, and so put the  ${}^7F_1$  state at 255 cm<sup>-1</sup> above  ${}^7F_0$  ground.

We do not have experimental energy levels available for Eu(antip)<sub>6</sub>I<sub>3</sub> and clearly cannot parameterize all levels nor, in the light of the spectra of the other europium complexes can we neglect intermediate coupling. We therefore chose to parameterize the energy of the first excited state, which should perhaps have most influence on the magnetic moments, and take the eigenvalues in Table 1 for the others. Varying this energy,  $\Delta E({}^7F_1 - {}^7F_0)$ , we constructed curves like those in Figure 3 and observed what  $\rho_4$  values would then be required to fit experiment. The process is summarized in Figure 4 showing the relation between  $\Delta E$  and  $\rho_4$  for fit to mean moments. There is obviously great sensitivity of  $\rho_4$  to  $\Delta E$ , a change of  $\Delta E$  from 320 to 360 cm<sup>-1</sup>.

As temperature is decreased and all excited states depopulate, moments should tend to a limiting value of the temperature-independent paramagnetism. This is found



FIGURE 4 Relationship between  $\Delta E$  and  $\rho_4$  mean moments of  $Eu(antip)_6I_3$ 

in the calculations and also from the experimental results given. Figure 5 shows plots of the 'limiting value' of  $\bar{\chi}$  calculated as function of  $\rho_4$  for a series of assumed  $\Delta E({}^7F_1 - {}^7F_0)$  values. The experimental value, shown with error bars, intersect the curves in a way that pairs up  $\rho_4$  and  $\Delta E$  values, e.g.  $\rho_4$  400 and  $\Delta E$  340 cm<sup>-1</sup>, or  $\rho_4$ 625 and  $\Delta E$  355 cm<sup>-1</sup>. These results are in good agreement with the curve in Figure 4: *i.e.* the very low temperature results, though approximate only, are consistent with the 100—300 K temperature range results. Of course, as  $\bar{\mu}$  values (especially at 100 K) vary a little 1972

with  $\theta$ , Figures 3—5 will vary also. But the steep dependence of  $\bar{\mu}$  on  $\Delta E$  (Figure 4) or of  $\bar{\chi}$  on  $\Delta E$  (Figure 5) is such that we have here the major influence on mean magnetic properties. Apart from the relationships described in Figures 4 and 5, we cannot define the crystal-field parameter  $\rho_4$ .

The magnitude of the magnetic anisotropies  $\Delta \mu$ , however, do not depend very much on  $\rho_4$  (Figure 3). Nor (Figure 6) do they depend much on  $\Delta E$ , even at 100 K. Thus, while an estimate of  $\rho_4$ , which must derive from a study of mean moments, is linked to the value of



FIGURE 5 Calculated 'limiting' mean susceptibilities as functions of  $\rho_4$  for family of  $\Delta E$  values. Experimental results in range 4—75 K for Eu(antip)<sub>e</sub>I<sub>a</sub> are shown



FIGURE 6 Approximate independence of anisotropies on  $\Delta E$  at A 100 and B 300 K

 $\Delta E$ , our usual procedure for estimating second-order crystal-field effects based on anisotropies is not. Accordingly we take  $\rho_4$  400 and  $\rho_6$  200 cm<sup>-1</sup> for computational purposes, based on values obtained for other complexes in this series and establish combinations of  $\rho_2$  and  $\theta$ which fit  $\Delta \mu$  values for Eu(antip)<sub>6</sub>I<sub>3</sub>. As usual we find  $\theta$  to fit varies a little with temperature but not too much. Table 5 gives values of  $\rho_2$ ,  $\theta$ , and  $A_2^0 \langle r^2 \rangle$ , related to the coefficient of  $Y_2^0$  in the trigonal potential, which exactly fit the experimental anisotropies at 300, 200, and 100 K.  $A_2^0 \langle r^2 \rangle$  values are essentially independent of  $\rho_2$  in the range 500  $< \rho_2 < 2000$  cm<sup>-1</sup>, but increase (with  $\theta$  decreasing) a little as temperature decreases, falling in the range 235—280 cm<sup>-1</sup>.

|                  | ,                    | P4 100, P8 200 0m                                       | ,                         |
|------------------|----------------------|---------------------------------------------------------|---------------------------|
|                  | T/K                  | $\theta/\mathrm{deg}.$                                  | $A_2^0\langle r^2\rangle$ |
| (a) $\rho_2$ 5   | 00 cm <sup>-1</sup>  |                                                         |                           |
|                  | 300                  | <b>48</b> · <b>2</b> 1                                  | 249                       |
|                  | 200                  | 47.85                                                   | 263                       |
|                  | 100                  | 47.45                                                   | 279                       |
| (b) $\rho_2 = 1$ | 000 cm <sup>-1</sup> |                                                         |                           |
|                  | 300                  | 51.62                                                   | 235                       |
|                  | 200                  | 51.36                                                   | 254                       |
|                  | 100                  | 51.14                                                   | 272                       |
| (c) $\rho_2 1$   | 500 cm <sup>-1</sup> |                                                         |                           |
|                  | 300                  | $52 \cdot 62$                                           | 238                       |
|                  | 200                  | $52 \cdot 46$                                           | 250                       |
|                  | 100                  | 52.32                                                   | <b>272</b>                |
| (d) $\rho_2 2$   | 000 cm <sup>-1</sup> |                                                         |                           |
|                  | 300                  | 53.17                                                   | 235                       |
|                  | 200                  | 53.03                                                   | 254                       |
|                  | 100                  | $52 \cdot 91$                                           | 272                       |
|                  | * A <sub>2</sub>     | $\langle r^2  angle = rac{3}{2}$ , $ ho_2(3 \cos^2 r)$ | $\theta = 1$ ).           |

In summary, then,  $\rho_6$  cannot be determined for europium(III) complexes because sixth-order crystalfield terms only operate within states lying higher than 1800 cm<sup>-1</sup>, estimates of  $\rho_4$  are very sensitive functions of the energy spectrum of the lowest levels and may be related to the energy of the lowest levels and may be related to the energy of the lowest excited state for convenience and finally, values of  $\rho_2/\theta$  and  $A_2^0\langle r^2 \rangle$  for comparison with those for other members of the series could be determined from anisotropies because of the latters' moderate independence of the detailed energy levels in the  $^7F$  term.

APPENDIX

The calculations and strategy of the calculations follows that discussed in previous parts, particularly Part VI.<sup>1</sup> Intermediate coupling  $f^6$  free-ion eigenvectors were taken from Ofelt.<sup>3</sup> Correction factors for the crystal-field reduced matrix elements have been calculated from these and are as follows:

| $U_2$<br>$U_4$<br>$U_c$       | 7F <sub>0</sub>  | ${}^{7}F_{1}$         | ${}^{7}F_{2}$              | ${}^{7}F_{3}$                | ${}^{7}F_{4}$              | ${}^{7}F_{5}$              | 7F6                          |
|-------------------------------|------------------|-----------------------|----------------------------|------------------------------|----------------------------|----------------------------|------------------------------|
| 7 <sub>°</sub> F <sub>0</sub> | 0<br>0<br>0      |                       |                            |                              |                            |                            |                              |
| ${}^7F_1$                     | 0<br>0<br>0      | 0·9727<br>0<br>0      |                            |                              |                            |                            |                              |
| ${}^{7}F_{2}$                 | 0·9794<br>0<br>0 | 0·9883<br>0<br>0      | $0.9712 \\ 0.9760 \\ 0$    |                              |                            |                            |                              |
| ${}^{7}F_{3}$                 | 0<br>0<br>0      | 0·9868<br>0·9766<br>0 | 0·9916<br>0·9768<br>0      | $0.9507 \\ 0.9601 \\ 1.0184$ |                            |                            |                              |
| 7F4                           | 0<br>0·9836<br>0 | 0<br>0·9860<br>0      | 0·9915<br>1·0076<br>0·9926 | 0·9934<br>0·9698<br>0·9872   | 1·0213<br>0·9752<br>0·9838 |                            |                              |
| ${}^{7}F_{5}$                 | 0<br>0<br>0      | 0<br>0·9996<br>1·0073 | 0<br>0·9965<br>1·0001      | 0·9988<br>0·9931<br>0·9947   | 0·9958<br>0·9978<br>0·9819 | 0·9981<br>0·9747<br>0·9765 |                              |
| ${}^{7}F_{6}$                 | 0<br>0<br>1·0045 | 0<br>0<br>1·0020      | 0<br>1·0077<br>0·9960      | 0<br>1·0021<br>0·9840        | 1·0046<br>0·9970<br>0·9824 | 0·9992<br>0·9911<br>0·9678 | $0.9895 \\ 0.9856 \\ 0.9515$ |

We thank the S.R.C. for a post-doctoral award (to D. J. M.).

[1/1332 Received, July 30th, 1971]